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1
Introduction

1.1 What are exact solutions, and why study them?

The theories of modern physics generally involve a mathematical model,
defined by a certain set of differential equations, and supplemented by a
set of rules for translating the mathematical results into meaningful state-
ments about the physical world. In the case of theories of gravitation, it
is generally accepted that the most successful is Einstein’s theory of gen-
eral relativity. Here the differential equations consist of purely geometric
requirements imposed by the idea that space and time can be represented
by a Riemannian (Lorentzian) manifold, together with the description of
the interaction of matter and gravitation contained in Einstein’s famous
field equations

Rab − 1
2Rgab + Λgab = κ0Tab. (1.1)

(The full definitions of the quantities used here appear later in the book.)
This book will be concerned only with Einstein’s theory. We do not, of
course, set out to discuss all aspects of general relativity. For the basic
problem of understanding the fundamental concepts we refer the reader
to other texts.
For any physical theory, there is first the purely mathematical problem

of analysing, as far as possible, the set of differential equations and of
finding as many exact solutions, or as complete a general solution, as
possible. Next comes the mathematical and physical interpretation of the
solutions thus obtained; in the case of general relativity this requires global
analysis and topological methods rather than just the purely local solution
of the differential equations. In the case of gravity theories, because they
deal with the most universal of physical interactions, one has an additional
class of problems concerning the influence of the gravitational field on

1



2 1 Introduction

other fields and matter; these are often studied by working within a fixed
gravitational field, usually an exact solution.
This book deals primarily with the solutions of the Einstein equations,

(1.1), and only tangentially with the other subjects. The strongest reason
for excluding the omitted topics is that each would fill (and some do fill)
another book; we do, of course, give some references to the relevant lit-
erature. Unfortunately, one cannot say that the study of exact solutions
has always maintained good contact with work on more directly physical
problems. Back in 1975, Kinnersley wrote “Most of the known exact solu-
tions describe situations which are frankly unphysical, and these do have
a tendency to distract attention from the more useful ones. But the situa-
tion is also partially the fault of those of us who work in this field. We toss
in null currents, macroscopic neutrino fields and tachyons for the sake of
greater ‘generality’; we seem to take delight at the invention of confusing
anti-intuitive notation; and when all is done we leave our newborn metric
wobbling on its vierbein without any visible means of interpretation.” Not
much has changed since then.
In defence of work on exact solutions, it may be pointed out that certain

solutions have played very important roles in the discussion of physical
problems. Obvious examples are the Schwarzschild and Kerr solutions for
black holes, the Friedmann solutions for cosmology, and the plane wave
solutions which resolved some of the controversies about the existence of
gravitational radiation. It should also be noted that because general rel-
ativity is a highly non-linear theory, it is not always easy to understand
what qualitative features solutions might possess, and here the exact so-
lutions, including many such as the Taub–NUT solutions which may be
thought unphysical, have proved an invaluable guide. Though the fact is
not always appreciated, the non-linearities also mean that perturbation
schemes in general relativity can run into hidden dangers (see e.g. Ehlers
et al. (1976)). Exact solutions which can be compared with approximate
or numerical results are very useful in checking the validity of approxima-
tion techniques and programs, see Centrella et al. (1986).
In addition to the above reasons for devoting this book to the classi-

fication and construction of exact solutions, one may note that although
much is known, it is often not generally known, because of the plethora
of journals, languages and mathematical notations in which it has ap-
peared. We hope that one beneficial effect of our efforts will be to save
colleagues from wasting their time rediscovering known results; in partic-
ular we hope our attempt to characterize the known solutions invariantly
will help readers to identify any new examples that arise.
One surprise for the reader may lie in the enormous number of known

exact solutions. Those who do not work in the field often suppose that the



1.2 The development of the subject 3

intractability of the full Einstein equations means that very few solutions
are known. In a certain sense this is true: we know relatively few exact
solutions for real physical problems. In most solutions, for example, there
is no complete description of the relation of the field to sources. Problems
which are without an exact solution include the two-body problem, the
realistic description of our inhomogeneous universe, the gravitational field
of a stationary rotating star and the generation and propagation of grav-
itational radiation from a realistic bounded source. There are, on the
other hand, some problems where the known exact solutions may be
the unique answer, for instance, the Kerr and Schwarzschild solutions
for the final collapsed state of massive bodies.
Any metric whatsoever is a ‘solution’ of (1.1) if no restriction is imposed

on the energy-momentum tensor, since (1.1) then becomes just a definition
of Tab; so we must first make some assumptions about Tab. Beyond this
we may proceed, for example, by imposing symmetry conditions on the
metric, by restricting the algebraic structure of the Riemann tensor, by
adding field equations for the matter variables or by imposing initial and
boundary conditions. The exact solutions known have all been obtained
by making some such restrictions. We have used the term ‘exact solution’
without a definition, and we do not intend to provide one. Clearly a met-
ric would be called an exact solution if its components could be given, in
suitable coordinates, in terms of the well-known analytic functions (poly-
nomials, trigonometric funstions, hyperbolic functions and so on). It is
then hard to find grounds for excluding functions defined only by (linear)
differential equations. Thus ‘exact solution’ has a less clear meaning than
one might like, although it conveys the impression that in some sense the
properties of the metric are fully known; no generally-agreed precise def-
inition exists. We have proceeded rather on the basis that what we chose
to include was, by definition, an exact solution.

1.2 The development of the subject

In the first few years (or decades) of research in general relativity, only a
rather small number of exact solutions were discussed. These mostly arose
from highly idealized physical problems, and had very high symmetry. As
examples, one may cite the well-known spherically-symmetric solutions
of Schwarzschild, Reissner and Nordström, Tolman and Friedmann (this
last using the spatially homogeneous metric form now associated with the
names of Robertson and Walker), the axisymmetric static electromagnetic
and vacuum solutions of Weyl, and the plane wave metrics. Although such
a limited range of solutions was studied, we must, in fairness, point out
that it includes nearly all the exact solutions which are of importance
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in physical applications: perhaps the only one of comparable importance
which was discovered after World War II is the Kerr solution.
In the early period there were comparatively few people actively work-

ing on general relativity, and it seems to us that the general belief at that
time was that exact solutions would be of little importance, except per-
haps as cosmological and stellar models, because of the extreme weakness
of the relativistic corrections to Newtonian gravity. Of course, a wide va-
riety of physical problems were attacked, but in a large number of cases
they were treated only by some approximation scheme, especially the
weak-field, slow-motion approximation.
Moreover, many of the techniques now in common use were either un-

known or at least unknown to most relativists. The first to become pop-
ular was the use of groups of motions, especially in the construction of
cosmologies more general than Friedmann’s. The next, which was in part
motivated by the study of gravitational radiation, was the algebraic clas-
sification of the Weyl tensor into Petrov types and the understanding of
the properties of algebraically special metrics. Both these developments
led in a natural way to the use of invariantly-defined tetrad bases, rather
than coordinate components. The null tetrad methods, and some ideas
from the theory of group representations and algebraic geometry, gave
rise to the spinor techniques, and equivalent methods, now usually em-
ployed in the form given by Newman and Penrose. The most recent of
these major developments was the advent of the generating techniques,
which were just being developed at the time of our first edition (Kramer
et al. 1980), and which we now describe fully.
Using these methods, it was possible to obtain many new solutions, and

this growth is still continuing.

1.3 The contents and arrangement of this book

Naturally, we begin by introducing differential geometry (Chapter 2) and
Riemannian geometry (Chapter 3). We do not provide a formal textbook
of these subjects; our aim is to give just the notation, computational
methods and (usually without proof) standard results we need for later
chapters. After this point, the way ahead becomes more debatable.
There are (at least) four schemes for classification of the known exact so-

lutions which could be regarded as having more or less equal importance;
these four are the algebraic classification of conformal curvature (Petrov
types), the algebraic classification of the Ricci tensor (Plebański or Segre
types) and the physical characterization of the energy-momentum ten-
sor, the existence and structure of preferred vector fields, and the groups
of symmetry ‘admitted by’ (i.e. which exist for) the metric (isometries
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and homotheties). We have devoted a chapter (respectively, Chapters 4,
5, 6 and 8) to each of these, introducing the terminology and methods
used later and some general theorems. Among these chapters we have in-
terpolated one (Chapter 7) which gives the Newman–Penrose formalism;
its position is due to the fact that this formalism can be applied immedi-
ately to elucidating some of the relationships between the considerations
in the preceding three chapters. With more solutions being known, un-
witting rediscoveries happened more frequently; so methods of invariant
characterization became important which we discuss in Chapter 9. We
close Part I with a presentation of the generation methods which became
so fruitful in the 1980s. This is again one of the subjects which, ideally,
warrants a book of its own and thus we had to be very selective in the
choice and manner of the material presented.
The four-dimensional presentation of the solutions which would arise

from the classification schemes outlined above may be acceptable to rela-
tivists but is impractical for authors. We could have worked through each
classification in turn, but this would have been lengthy and repetitive (as
it is, the reader will find certain solutions recurring in various disguises).
We have therefore chosen to give pride of place to the two schemes which
seem to have had the widest use in the discovery and construction of
new solutions, namely symmetry groups (Part II of the book) and Petrov
types (Part III). The other main classifications have been used in subdi-
viding the various classes of solutions discussed in Parts II and III, and
they are covered by the tables in Part V. The application of the genera-
tion techniques and some other ways of classifying and constructing exact
solutions are presented in Part IV.
The specification of the energy-momentum tensor played a very impor-

tant role because we decided at an early stage that it would be impossible
to provide a comprehensive survey of all energy-momentum tensors that
have ever been considered. We therefore restricted ourselves to the fol-
lowing energy-momentum tensors: vacuum, electromagnetic fields, pure
radiation, dust and perfect fluids. (The term ‘pure radiation’ is used here
for an energy-momentum tensor representing a situation in which all the
energy is transported in one direction with the speed of light: such ten-
sors are also referred to in the literature as null fields, null fluids and null
dust.) Combinations of these, and matching of solutions with equal or
different energy-momentum tensors (e.g. the Schwarzschild vacuoli in a
Friedmann universe) are in general not considered, and the cosmological
constant Λ, although sometimes introduced, is not treated systematically
throughout.
These limitations on the scope of our work may be disappointing to

some, especially those working on solutions containing charged perfect
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fluids, scalar, Dirac and neutrino fields, or solid elastic bodies. They
were made not only because some limits on the task we set ourselves
were necessary, but also because most of the known solutions are for the
energy-momentum tensors listed and because it is possible to give a fairly
full systematic treatment for these cases. One may also note that un-
less additional field equations for the additional variables are introduced,
it is easier to find solutions for more complex energy-momentum tensor
forms than for simpler ones: indeed in extreme cases there may be no
equations to solve at all, the Einstein equations instead becoming merely
definitions of the energy-momentum from a metric ansatz. Ultimately, of
course, the choice is a matter of taste.
The arrangement within Part II is outlined more fully in §11.1. Here we

remark only that we treated first non-null and then null group orbits (as
defined in Chapter 8), arranging each in order of decreasing dimension of
the orbit and thereafter (usually) in decreasing order of dimension of the
group. Certain special cases of physical or mathematical interest were sep-
arated out of this orderly progression and given chapters of their own, for
example, spatially-homogeneous cosmologies, spherically-symmetric solu-
tions, colliding plane waves and the inhomogeneous fluid solutions with
symmetries. Within each chapter we tried to give first the differential
geometric results (i.e. general forms of the metric and curvature) and
then the actual solutions for each type of energy-momentum in turn; this
arrangement is followed in Parts III and IV also.
In Part III we have given a rather detailed account of the well-developed

theory that is available for algebraically special solutions for vacuum, elec-
tromagnetic and pure radiation fields. Only a few classes, mostly very spe-
cial cases, of algebraically special perfect-fluid solutions have been thor-
oughly discussed in the literature: a short review of these classes is given
in Chapter 33. Quite a few of the algebraically special solutions also admit
groups of motions. Where this is known (and, as far as we are aware, it
has not been systematically studied for all cases), it is of course indicated
in the text and in the tables.
Part IV, the last of the parts treating solutions in detail, covers solutions

found by the generation techniques developed by various authors since
1980 (although most of these rely on the existence of a group of motions,
and in some sense therefore belong in Part II). There are many such
techniques in use and they could not all be discussed in full: our choice
of what to present in detail and what to mention only as a reference
simply reflects our personal tastes and experiences. This part also gives
some discussion of the classification of space-times with special vector and
tensor fields and solutions found by embedding or the study of metrics
with special subspaces.
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The weight of material, even with all the limitations described above,
made it necessary to omit many proofs and details and give only the
necessary references.

1.4 Using this book as a catalogue

This book has not been written simply as a catalogue. Nevertheless, we
intended that it should be possible for the book to be used for this purpose.
In arranging the information here, we have assumed that a reader who
wishes to find (or, at least, search for) a solution will know the original
author (if the reader is aware the solution is not new) or know some of
its invariant properties.
If the original author1 is known, the reader should turn to the alphabet-

ically-organized reference list. He or she should then be able to identify the
relevant paper(s) of that author, since the titles, and, of course, journals
and dates, are given in full. Following each reference is a list of all the
places in the book where it is cited.
A reader who knows the (maximal) group of motions can find the rele-

vant chapter in Part II by consulting the contents list or the tables. If the
reader knows the Petrov type, he or she can again consult the contents
list or the tables by Petrov type; if only the energy-momentum tensor
is known, the reader can still consult the relevant tables. If none of this
information is known, he or she can turn to Part IV, if one of the special
methods described there has been used. If still in doubt, the whole book
will have to be read.
If the solution is known (and not accidentally omitted) it will in many

cases be given in full, possibly only in the sense of appearing contained in
a more general form for a whole class of solutions: some solutions of great
complexity or (to us) lesser importance have been given only in the sense
of a reference to the literature. Each solution may, of course, be found
in a great variety of coordinate forms and be characterized invariantly
in several ways. We have tried to eliminate duplications, i.e. to identify
those solutions that are really the same but appear in the literature as
separate, and we give cross-references between sections where possible.
The solutions are usually given in coordinates adapted to some invari-
ant properties, and it should therefore be feasible (if non-trivial) for the
reader to transform to any other coordinate system he or she has dis-
covered (see also Chapter 9). The many solutions obtained by generating
techniques are for the most part only tabulated and not given explicitly,

1 There is a potential problem here if the paper known to the reader is an unwitting
re-discovery, since for brevity we do not cite such works.
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since it is in principle possible to generate infinitely many such solutions
by complicated but direct calculations.
Solutions that are neither given nor quoted are either unknown to us or

accidentally omitted, and in either case the authors would be interested
to hear about them. (We should perhaps note here that not all papers
containing frequently-rediscovered solutions have been cited: in such a
case only the earliest papers, and those rediscoveries with some special
importance, have been given. Moreover, if a general class of solutions is
known, rediscoveries of special cases belonging to this class have been
mentioned only occasionally. We have also not in general commented,
except by omission, on papers where we detected errors, though in a few
cases where a paper contains some correct and some wrong results we
have indicated that.)
We have checked most of the solutions given in the book. This was done

by machine and by hand, but sometimes we may have simply repeated
the authors’ errors. It is not explicitly stated where we did not check
solutions.
In addition to references within the text, cited by author and year,

we have sometimes put at the ends of sections some references to paral-
lel methods, or to generalizations, or to applications. We would draw
the reader’s attention to some books of similar character which have
appeared since the first edition of this book was published and which
complement and supplement this one. Krasiński (1997) has extensively
surveyed those solutions which contain as special cases the Robertson–
Walker cosmologies (for which see Chapter 14), without the restric-
tions on energy-momentum content which we impose. Griffiths (1991)
gives an extensive study of the colliding wave solutions discussed here in
Chapter 25, Wainwright and Ellis (1997) similarly discusses spatially-
homogeneous and some other cosmologies (see Chapters 14 and 23),
Bičák (2000) discusses selected exact solutions and their history, and
Belinski and Verdaguer (2001) reviews solitonic solutions obtainable by
the methods of Chapter 34, especially §34.4: these books deal with phys-
ical and interpretational issues for which we do not have space.
Thanks are due to many colleagues for comments on and corrections

to the first edition: we acknowledge in particular the remarks of J.E.
Åman, A. Barnes, W.B. Bonnor, J. Carot, R. Debever, K.L. Duggal, J.B.
Griffiths, G.S. Hall, R.S. Harness, R.T. Jantzen, G.D. Kerr, A. Koutras,
J.K. Kowalczyński, A. Krasiński, K. Lake, D. Lorenz, M. Mars, J.D.
McCrea, C.B.G. McIntosh, G.C. McVittie, G. Neugebauer, F.M. Paiva,
M.D. Roberts, J.M.M. Senovilla, S.T.C. Siklos, B.O.J. Tupper, C. Uggla,
R. Vera, J.A. Wainwright, Th. Wolf and M. Wyman.




