Exact Solutions of Einstein's Field Equations

Second Edition

HANS STEPHANI Friedrich-Schiller-Universität, Jena

DIETRICH KRAMER Friedrich-Schiller-Universität, Jena

MALCOLM MACCALLUM Queen Mary, University of London

CORNELIUS HOENSELAERS Loughborough University

EDUARD HERLT Friedrich-Schiller-Universität, Jena

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers, E. Herlt 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 11/13pt System $IAT_EX 2_{\varepsilon}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Exact solutions of Einstein's field equations. - 2nd ed. / H. Stephani ... [et al.].
p. cm. - (Cambridge monographs on mathematical physics) Includes bibliographical references and index. ISBN 0-521-46136-7
1. General relativity (Physics) 2. Gravitational waves.
3. Space and time. 4. Einstein field equations - Numerical solutions. I. Stephani, Hans. II. Series. QC173.6 .E96 2003 530.11-dc21 2002071495

ISBN 052146136 $7~\mathrm{hardback}$

Contents

Preface		xix
List	of tables	xxiii
Notation		xxvii
1	Introduction	1
1.1	What are exact solutions, and why study them?	1
1.2	The development of the subject	3
1.3	The contents and arrangement of this book	4
1.4	Using this book as a catalogue	7
	Part I: General methods	9
2	Differential geometry without a metric	9
2.1	Introduction	9
2.2	Differentiable manifolds	10
2.3	Tangent vectors	12
2.4	One-forms	13
2.5	Tensors	15
2.6	Exterior products and <i>p</i> -forms	17
2.7	The exterior derivative	18
2.8	The Lie derivative	21
2.9	The covariant derivative	23
2.10	The curvature tensor	25
2.11	Fibre bundles	27

3	Some topics in Riemannian geometry	30
3.1	Introduction	30
3.2	The metric tensor and tetrads	30
3.3	Calculation of curvature from the metric	34
3.4	Bivectors	35
3.5	Decomposition of the curvature tensor	37
3.6	Spinors	40
3.7	Conformal transformations	43
3.8	Discontinuities and junction conditions	45
4	The Petrov classification	48
4.1	The eigenvalue problem	48
4.2	The Petrov types	49
4.3	Principal null directions and determination of the	
	Petrov types	53
5	Classification of the Ricci tensor and the	
	energy-momentum tensor	57
5.1	The algebraic types of the Ricci tensor	57
5.2	The energy-momentum tensor	60
5.3	The energy conditions	63
5.4	The Rainich conditions	64
5.5	Perfect fluids	65
6	Vector fields	68
6.1	Vector fields and their invariant classification	68
	6.1.1 Timelike unit vector fields	70
	6.1.2 Geodesic null vector fields	70
6.2	Vector fields and the curvature tensor	72
	6.2.1 Timelike unit vector fields	72
	6.2.2 Null vector fields	74
7	The Newman–Penrose and related	
	formalisms	75
7.1	The spin coefficients and their transformation	
	laws	75
7.2	The Ricci equations	78
7.3	The Bianchi identities	81
7.4	The GHP calculus	84
7.5	Geodesic null congruences	86
7.6	The Goldberg–Sachs theorem and its generalizations	87

8	Continuous groups of transformations; isometry	
	and homothety groups	91
8.1	Lie groups and Lie algebras	91
8.2	Enumeration of distinct group structures	95
8.3	Transformation groups	97
8.4	Groups of motions	98
8.5	Spaces of constant curvature	101
8.6	Orbits of isometry groups	104
	8.6.1 Simply-transitive groups	105
	8.6.2 Multiply-transitive groups	106
8.7	Homothety groups	110
9	Invariants and the characterization of geometries	112
9.1	Scalar invariants and covariants	113
9.2	The Cartan equivalence method for space-times	116
9.3	Calculating the Cartan scalars	120
	9.3.1 Determination of the Petrov and Segre types	120
	9.3.2 The remaining steps	124
9.4	Extensions and applications of the Cartan method	125
9.5	Limits of families of space-times	126
10	Generation techniques	129
10.1	Introduction	129
10.2	Lie symmetries of Einstein's equations	129
	10.2.1 Point transformations and their generators	129
	10.2.2 How to find the Lie point symmetries of a given	
	differential equation	131
	10.2.3 How to use Lie point symmetries: similarity	100
10.0	reduction	132
10.3	Symmetries more general than Lie symmetries	134
	10.3.1 Contact and Lie–Backlund symmetries	134
10.4	10.3.2 Generalized and potential symmetries	134
10.4	Prolongation	137
	10.4.1 Integral manifolds of differential forms	137
	10.4.2 Isovectors, similarity solutions and conservation laws	140
	10.4.3 Prolongation structures	141
10.5	Solutions of the linearized equations	145
10.6	Bäcklund transformations	146
10.7	Riemann–Hilbert problems	148
10.8		1 10
10.0	Harmonic maps	148
10.0 10.9	Harmonic maps Variational Bäcklund transformations	$\frac{148}{151}$

10.11	Generation methods including perfect fluids	152
	10.11.1 Methods using the existence of Killing vectors	152
	10.11.2 Conformal transformations	155
	Part II: Solutions with groups of motions	157
11	Classification of solutions with isometries or	
	homotheties	157
11.1	The possible space-times with isometries	157
11.2	Isotropy and the curvature tensor	159
11.3	The possible space-times with proper	
	homothetic motions	162
11.4	Summary of solutions with homotheties	167
12	Homogeneous space-times	171
12.1	The possible metrics	171
12.2	Homogeneous vacuum and null Einstein-Maxwell space-times	174
12.3	Homogeneous non-null electromagnetic fields	175
12.4	Homogeneous perfect fluid solutions	177
12.5	Other homogeneous solutions	180
12.6	Summary	181
13	Hypersurface-homogeneous space-times	183
13.1	The possible metrics	183
	13.1.1 Metrics with a G_6 on V_3	183
	13.1.2 Metrics with a G_4 on V_3	183
	13.1.3 Metrics with a G_3 on V_3	187
13.2	Formulations of the field equations	188
13.3	Vacuum, Λ -term and Einstein–Maxwell solutions	194
	13.3.1 Solutions with multiply-transitive groups	194
	13.3.2 Vacuum spaces with a G_3 on V_3	196
	13.3.3 Einstein spaces with a G_3 on V_3	199
	13.3.4 Einstein–Maxwell solutions with a G_3 on V_3	201
13.4	Perfect fluid solutions homogeneous on T_3	204
13.5	Summary of all metrics with G_r on V_3	207
14	Spatially-homogeneous perfect fluid cosmologies	210
14.1	Introduction	210
14.2	Robertson–Walker cosmologies	211
14.3	Cosmologies with a G_4 on S_3	214
14.4	Cosmologies with a G_3 on S_3	218

15	Groups G_3 on non-null orbits V_2 . Spherical	
	and plane symmetry	226
15.1	Metric, Killing vectors, and Ricci tensor	226
15.2	Some implications of the existence of an isotropy	
	group I_1	228
15.3	Spherical and plane symmetry	229
15.4	Vacuum, Einstein–Maxwell and pure radiation fields	230
	15.4.1 Timelike orbits	230
	15.4.2 Spacelike orbits	231
	15.4.3 Generalized Birkhoff theorem	232
	15.4.4 Spherically- and plane-symmetric fields	233
15.5	Dust solutions	235
15.6	Perfect fluid solutions with plane, spherical or	
	pseudospherical symmetry	237
	15.6.1 Some basic properties	237
	15.6.2 Static solutions	238
	15.6.3 Solutions without shear and expansion	238
	15.6.4 Expanding solutions without shear	239
	15.6.5 Solutions with nonvanishing shear	240
15.7	Plane-symmetric perfect fluid solutions	243
	15.7.1 Static solutions	243
	15.7.2 Non-static solutions	244
16	Spherically-symmetric perfect fluid solutions	247
16.1	Static solutions	247
	16.1.1 Field equations and first integrals	247
	16.1.2 Solutions	250
16.2	Non-static solutions	251
	16.2.1 The basic equations	251
	16.2.2 Expanding solutions without shear	253
	16.2.3 Solutions with non-vanishing shear	260
17	Groups G_2 and G_1 on non-null orbits	264
17.1	Groups G_2 on non-null orbits	264
	17.1.1 Subdivisions of the groups G_2	264
	17.1.2 Groups G_2I on non-null orbits	265
	17.1.3 G_2II on non-null orbits	267
17.2	Boost-rotation-symmetric space-times	268
17.3	Group G_1 on non-null orbits	271
18	Stationary gravitational fields	275
18.1	The projection formalism	275

Contents

18.2	The Ricci tensor on Σ_3	277
18.3	Conformal transformation of Σ_3 and the field equations	278
18.4	Vacuum and Einstein–Maxwell equations for stationary	
	fields	279
18.5	Geodesic eigenrays	281
18.6	Static fields	283
	18.6.1 Definitions	283
	18.6.2 Vacuum solutions	284
	18.6.3 Electrostatic and magnetostatic Einstein–Maxwell	
	fields	284
	18.6.4 Perfect fluid solutions	286
18.7	The conformastationary solutions	287
	18.7.1 Conformastationary vacuum solutions	287
	18.7.2 Conformastationary Einstein–Maxwell fields	288
18.8	Multipole moments	289
19	Stationary axisymmetric fields: basic concepts	
10.1	and field equations	292
19.1	The Killing vectors	292
19.2	Orthogonal surfaces	293
19.3	The metric and the projection formalism	296
19.4	The field equations for stationary axisymmetric Einstein–	200
10 5	Maxwell fields	298
19.5	Various forms of the field equations for stationary axisym-	000
10.0	metric vacuum fields	299
19.6	Field equations for rotating fluids	302
20	Stationary axisymmetric vacuum solutions	304
20.1	Introduction	304
20.2	Static axisymmetric vacuum solutions (Weyl's	
	class)	304
20.3	The class of solutions $U = U(\omega)$ (Papapetrou's class)	309
20.4	The class of solutions $S = S(A)$	310
20.5	The Kerr solution and the Tomimatsu–Sato class	311
20.6	Other solutions	313
20.7	Solutions with factor structure	316
21	Non-empty stationary axisymmetric solutions	210
21 211	Finstein-Maywell fields	310
41.1	21.1.1 Electrostatic and magnetostatic solutions	310
	21.1.1 Electrostatic and magnetostatic solutions 21.1.2 Type D solutions: A general matric and its limits	300
	21.1.2 Type D solutions. It general metric and its mints 21.1.3 The Kerr–Newman solution	325
		040

	21.1.4 Complexification and the Newman–Janis 'complex trick'	398
	21.1.5 Other solutions	329
21.2	Perfect fluid solutions	330
	21.2.1 Line element and general properties	330
	21.2.2 The general dust solution	331
	21.2.3 Rigidly rotating perfect fluid solutions	333
	21.2.4 Perfect fluid solutions with differential rotation	337
22	Groups G_2I on spacelike orbits: cylindrical	
	symmetry	341
22.1	General remarks	341
22.2	Stationary cylindrically-symmetric fields	342
22.3	Vacuum fields	350
22.4	Einstein–Maxwell and pure radiation fields	354
23	Inhomogeneous perfect fluid solutions with	
0.0.1	symmetry	358
23.1	Solutions with a maximal H_3 on S_3	359
23.2	Solutions with a maximal H_3 on T_3	361
23.3	Solutions with a G_2 on S_2	362
	23.3.1 Diagonal metrics	303
	23.3.2 Non-diagonal solutions with orthogonal transitivity	372
23/	23.3.3 Solutions without orthogonal transitivity Solutions with a G_1 or a H_2	373 374
20.4	Solutions with a G ₁ of a H ₂	514
24	Groups on null orbits. Plane waves	375
24.1	Introduction	375
24.2	Groups G_3 on N_3	376
24.3	Groups G_2 on N_2	377
24.4	Null Killing vectors $(G_1 \text{ on } N_1)$	379
	24.4.1 Non-twisting null Killing vector	380
	24.4.2 Twisting null Killing vector	382
24.5	The plane-fronted gravitational waves with parallel rays	
	$(pp ext{-waves})$	383
25	Collision of plane waves	387
25.1	General features of the collision problem	387
25.2	The vacuum field equations	389
25.3	Vacuum solutions with collinear polarization	392
25.4	Vacuum solutions with non-collinear polarization	394
25.5	Einstein–Maxwell fields	-397

25.6Stiff perfect fluids and pure radiation 40325.6.1 Stiff perfect fluids 40325.6.2 Pure radiation (null dust) 405Part III: Algebraically special solutions 407 26 The various classes of algebraically special solutions. Some algebraically general solutions 407Solutions of Petrov type II, D, III or N26.140726.2Petrov type D solutions 412Conformally flat solutions 26.3413Algebraically general vacuum solutions with geodesic 26.4and non-twisting rays 413 $\mathbf{27}$ The line element for metrics with $\kappa = \sigma = 0 =$ $R_{11} = R_{14} = R_{44}, \quad \Theta + i \omega \neq 0$ 416 The line element in the case with twisting rays ($\omega \neq 0$) 27.141627.1.1 The choice of the null tetrad 416 27.1.2 The coordinate frame 418 27.1.3 Admissible tetrad and coordinate transformations 420The line element in the case with non-twisting rays ($\omega = 0$) 27.2420 $\mathbf{28}$ **Robinson**-Trautman solutions 422 28.1Robinson–Trautman vacuum solutions 422 28.1.1 The field equations and their solutions 422 28.1.2 Special cases and explicit solutions 424 Robinson-Trautman Einstein-Maxwell fields 427 28.228.2.1 Line element and field equations 427 28.2.2 Solutions of type III, N and O 42928.2.3 Solutions of type D42928.2.4 Type II solutions 431 Robinson–Trautman pure radiation fields 28.343528.4Robinson–Trautman solutions with a cosmological constant Λ 43629 Twisting vacuum solutions 437Twisting vacuum solutions – the field equations 29.143729.1.1 The structure of the field equations 43729.1.2 The integration of the main equations 43829.1.3 The remaining field equations 44029.1.4 Coordinate freedom and transformation properties 441

Contents

xiv

29.2	Some general classes of solutions	442
	29.2.1 Characterization of the known classes of solutions	442
	29.2.2 The case $\partial_{\zeta} I = \partial_{\zeta} (\overline{G}^2 - \partial_{\zeta} \overline{G}) \neq 0$	445
	29.2.3 The case $\partial_{\zeta} I = \partial_{\zeta} (\overline{G}^2 - \partial_{\zeta} \overline{G}) \neq 0, \ L_{,u} = 0$	446
	29.2.4 The case $I = 0$	447
	29.2.5 The case $I = 0 = L_{,u}$	449
	29.2.6 Solutions independent of ζ and $\overline{\zeta}$	450
29.3	Solutions of type N ($\Psi_2 = 0 = \Psi_3$)	451
29.4	Solutions of type III ($\Psi_2 = 0, \Psi_3 \neq 0$)	452
29.5	Solutions of type D $(\Im \Psi_2 \Psi_4 = 2 \Psi_3^2, \Psi_2 \neq 0)$	452
29.6	Solutions of type II	454
30	Twisting Einstein–Maxwell and pure radiation	
	fields	455
30.1	The structure of the Einstein–Maxwell field equations	455
30.2	Determination of the radial dependence of the metric and the	
	Maxwell field	456
30.3	The remaining field equations	458
30.4	Charged vacuum metrics	459
30.5	A class of radiative Einstein–Maxwell fields $(\Phi_2^0 \neq 0)$	460
30.6	Remarks concerning solutions of the different Petrov types	461
30.7	Pure radiation fields	463
	30.7.1 The field equations	463
	30.7.2 Generating pure radiation fields from vacuum by	
	changing P	464
	30.7.3 Generating pure radiation fields from vacuum by	
	changing m	466
	30.7.4 Some special classes of pure radiation fields	467
31	Non-diverging solutions (Kundt's class)	470
31.1	Introduction	470
31.2	The line element for metrics with $\Theta + i\omega = 0$	470
31.3	The Ricci tensor components	472
31.4	The structure of the vacuum and Einstein–Maxwell	
	equation	473
31.5	Vacuum solutions	476
	31.5.1 Solutions of types III and N	476
	31.5.2 Solutions of types D and H	478
31.6	Einstein–Maxwell null fields and pure radiation fields	480
31.7	Einstein–Maxwell non-null fields	481
31.8	Solutions including a cosmological constant Λ	483

32	Kerr–Schild metrics	485
32.1	General properties of Kerr–Schild metrics	485
	32.1.1 The origin of the Kerr–Schild–Trautman ansatz	485
	32.1.2 The Ricci tensor, Riemann tensor and Petrov type	485
	32.1.3 Field equations and the energy-momentum tensor	487
	32.1.4 A geometrical interpretation of the Kerr–Schild	
	ansatz	487
	32.1.5 The Newman–Penrose formalism for shearfree and	
	geodesic Kerr–Schild metrics	489
32.2	Kerr–Schild vacuum fields	492
	32.2.1 The case $\rho = -(\Theta + i\omega) \neq 0$	492
	32.2.2 The case $\rho = -(\Theta + i\omega) = 0$	493
32.3	Kerr–Schild Einstein–Maxwell fields	493
	32.3.1 The case $\rho = -(\Theta + i\omega) \neq 0$	493
	32.3.2 The case $\rho = -(\Theta + i\omega) = 0$	495
32.4	Kerr–Schild pure radiation fields	497
	32.4.1 The case $\rho \neq 0, \sigma = 0$	497
	32.4.2 The case $\sigma \neq 0$	499
	32.4.3 The case $\rho = \sigma = 0$	499
32.5	Generalizations of the Kerr–Schild ansatz	499
	32.5.1 General properties and results	499
	32.5.2 Non-flat vacuum to vacuum	501
	32.5.3 Vacuum to electrovac	502
	32.5.4 Perfect fluid to perfect fluid	503
33	Algebraically special perfect fluid solutions	506
33.1	Generalized Robinson–Trautman solutions	506
33.2	Solutions with a geodesic, shearfree, non-expanding multiple	
	null eigenvector	510
33.3	Type D solutions	512
	33.3.1 Solutions with $\kappa = \nu = 0$	513
	33.3.2 Solutions with $\kappa \neq 0, \nu \neq 0$	513
33.4	Type III and type N solutions	515
	Part IV: Special methods	518
34	Application of generation techniques to general	
	relativity	518
34.1	Methods using harmonic maps (potential space	
	symmetries)	518
	34.1.1 Electrovacuum fields with one Killing vector	518
	34.1.2 The group $SU(2,1)$	521

	34.1.3 Complex invariance transformations	525
	34.1.4 Stationary axisymmetric vacuum fields	526
34.2	Prolongation structure for the Ernst equation	520
34.3	The linearized equations the Kinnerslev-Chitre B group and	020
01.0	the Hoenselaers_Kinnersley_Xanthonoulos transformations	532
	34.3.1. The field equations	532
	34.3.2 Infinitesimal transformations and transformations	002
	preserving Minkowski space	534
	34.3.3 The Hoenselaers_Kinnersley_Xanthonoulos transfor-	001
	mation	535
34.4	Bäcklund transformations	538
34.5	The Belinski–Zakharov technique	543
34.6	The Riemann–Hilbert problem	547
	34.6.1 Some general remarks	547
	34.6.2 The Neugebauer–Meinel rotating disc solution	548
34.7	Other approaches	549
34.8	Einstein–Maxwell fields	550
34.9	The case of two space-like Killing vectors	550
35	Special vector and tensor fields	553
35.1	Space-times that admit constant vector and tensor fields	553
	35.1.1 Constant vector fields	553
	35.1.2 Constant tensor fields	554
35.2	Complex recurrent, conformally recurrent, recurrent and	
	symmetric spaces	556
	35.2.1 The definitions	556
	35.2.2 Space-times of Petrov type D	557
	35.2.3 Space-times of type N	557
	35.2.4 Space-times of type O	558
35.3	Killing tensors of order two and Killing–Yano tensors	559
	35.3.1 The basic definitions	559
	35.3.2 First integrals, separability and Killing or Killing– Vano tensors	560
	35.3.3 Theorems on Killing and Killing-Vano tensors in four-	500
	dimensional space-times	561
$35\ 4$	Collineations and conformal motions	564
00.1	35.4.1 The basic definitions	564
	35.4.2 Proper curvature collineations	565
	35.4.3 General theorems on conformal motions	565
	35.4.4 Non-conformally flat solutions admitting proper	000
	conformal motions	567

Contents

xvii

36	Solutions with special subspaces	571
36.1	The basic formulae	571
36.2	Solutions with flat three-dimensional slices	573
	36.2.1 Vacuum solutions	573
	36.2.2 Perfect fluid and dust solutions	573
36.3	Perfect fluid solutions with conformally flat slices	577
36.4	Solutions with other intrinsic symmetries	579
37	Local isometric embedding of four-dimensional	
	Riemannian manifolds	580
37.1	The why of embedding	580
37.2	The basic formulae governing embedding	581
37.3	Some theorems on local isometric embedding	583
	37.3.1 General theorems	583
	37.3.2 Vector and tensor fields and embedding class	584
	37.3.3 Groups of motions and embedding class	586
37.4	Exact solutions of embedding class one	587
	37.4.1 The Gauss and Codazzi equations and the possible	
	types of Ω_{ab}	587
	37.4.2 Conformally flat perfect fluid solutions of embedding	
	class one	588
	37.4.3 Type D perfect fluid solutions of embedding class one	591
	37.4.4 Pure radiation field solutions of embedding class one	594
37.5	Exact solutions of embedding class two	596
	37.5.1 The Gauss–Codazzi–Ricci equations	596
	37.5.2 Vacuum solutions of embedding class two	598
	37.5.3 Conformally flat solutions	599
37.6	Exact solutions of embedding class $p > 2$	603
	Part V: Tables	605
38	The interconnections between the main	
	classification schemes	605
38.1	Introduction	605
38.2	The connection between Petrov types and groups of motions	606
38.3	Tables	609
	References	615
	Index	690

List of Tables

3.1	Examples of spinor equivalents, defined as in (3.70) .	42
4.1	The Petrov types	50
4.2	Normal forms of the Weyl tensor, and Petrov types	51
4.3	The roots of the algebraic equation (4.18) and their multiplicities.	55
5.1	The algebraic types of the Ricci tensor	59
5.2	Invariance groups of the Ricci tensor types	60
8.1	Enumeration of the Bianchi types	96
8.2	Killing vectors and reciprocal group generators by Bianchi type	107
9.1	Maximum number of derivatives required to characterize a metric locally	121
11.1	Metrics with isometries listed by orbit and group action, and where to find them	169
11.0	and where to find them Solutions with proper how others, groups $H_{-n} > A$	100
11.2	Solutions with proper homothety groups $H_r, r > 4$	100
11.3	Solutions with proper homothety groups H_4 on V_4	100
11.4	Solutions with proper homothety groups on V_3	168
12.1	Homogeneous solutions	181
13.1	The number of essential parameters, by Bianchi type, in general solutions for vacuum and for perfect fluids with	
	given equation of state	189

13.2 13.3	Subgroups G_3 on V_3 occurring in metrics with multiply- transitive groups Solutions given in this book with a maximal G_4 on V_3	208 208
13.4	Solutions given explicitly in this book with a maximal G_3 on V_3	209
15.1	The vacuum, Einstein–Maxwell and pure radiation solutions with G_3 on S_2 $(Y_{,a}Y^{,a} > 0)$	231
16.1	Key assumptions of some static spherically-symmetric per- fect fluid solutions in <i>isotropic coordinates</i>	251
16.2	Key assumptions of some static spherically-symmetric per- fect fluid solutions in <i>canonical coordinates</i> Some subclasses of the class $E = (ar^2 + 2br + c)^{-5/2}$ of	252
10.5	solutions solutions $F = (ax^2 + 2ox + c)^{-3/2}$ of	257
18.1	The complex potentials \mathcal{E} and Φ for some physical problems	281
18.2	The degenerate static vacuum solutions	285
21.1	Stationary axisymmetric Einstein–Maxwell fields	325
24.1	Metrics $ds^2 = x^{-1/2}(dx^2 + dy^2) - 2xdu [dv + M(x, y, u)du]$ with more than one symmetry	382
24.2	Symmetry classes of vacuum pp -waves	385
26.1	Subcases of the algebraically special (not conformally flat) solutions	408
28.1	The Petrov types of the Robinson–Trautman vacuum so- lutions	424
29.1	The possible types of two-variable twisting vacuum met- rics	443
29.2	Twisting algebraically special vacuum solutions	444
32.1	Kerr–Schild space-times	492
34.1	The subspaces of the potential space for stationary Einstein–Maxwell fields, and the corresponding subgroups	F 00
34.2	of $SU(2,1)$ Generation by potential space transformations	$523 \\ 530$
34.3	Applications of the HKX method	$530 \\ 537$
34.4	Applications of the Belinski–Zakharov method	546

37.1	Upper limits for the embedding class p of various metrics	
	admitting groups	586
37.2	Embedding class one solutions	595
37.3	Metrics known to be of embedding class two	603
38.1	The algebraically special, diverging vacuum solutions of	
	maximum mobility	607
38.2	Robinson–Trautman vacuum solutions admitting two or	
	more Killing vectors	608
38.3	Petrov types versus groups on orbits V_4	609
38.4	Petrov types versus groups on non-null orbits V_3	610
38.5	Petrov types versus groups on non-null orbits V_2 and V_1	610
38.6	Energy-momentum tensors versus groups on orbits V_4	
	(with $\mathcal{L}_{\xi}F_{ab} = 0$ for the Maxwell field)	611
38.7	Energy-momentum tensors versus groups on non-null or-	
	bits V_3	611
38.8	Energy-momentum tensors versus groups on non-null or-	
	bits V_2 and V_1	612
38.9	Algebraically special vacuum, Einstein–Maxwell and pure	
	radiation fields (non-aligned or with $\kappa \overline{\kappa} + \sigma \overline{\sigma} \neq 0$)	613
38.10	Algebraically special (non-vacuum) Einstein–Maxwell and	
	pure radiation fields, aligned and with $\kappa \overline{\kappa} + \sigma \overline{\sigma} = 0$.	614

1 Introduction

1.1 What are exact solutions, and why study them?

The theories of modern physics generally involve a mathematical model, defined by a certain set of differential equations, and supplemented by a set of rules for translating the mathematical results into meaningful statements about the physical world. In the case of theories of gravitation, it is generally accepted that the most successful is Einstein's theory of general relativity. Here the differential equations consist of purely geometric requirements imposed by the idea that space and time can be represented by a Riemannian (Lorentzian) manifold, together with the description of the interaction of matter and gravitation contained in Einstein's famous field equations

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = \kappa_0 T_{ab}.$$
(1.1)

(The full definitions of the quantities used here appear later in the book.) This book will be concerned only with Einstein's theory. We do not, of course, set out to discuss all aspects of general relativity. For the basic problem of understanding the fundamental concepts we refer the reader to other texts.

For any physical theory, there is first the purely mathematical problem of analysing, as far as possible, the set of differential equations and of finding as many exact solutions, or as complete a general solution, as possible. Next comes the mathematical and physical interpretation of the solutions thus obtained; in the case of general relativity this requires global analysis and topological methods rather than just the purely local solution of the differential equations. In the case of gravity theories, because they deal with the most universal of physical interactions, one has an additional class of problems concerning the influence of the gravitational field on other fields and matter; these are often studied by working within a fixed gravitational field, usually an exact solution.

This book deals primarily with the solutions of the Einstein equations, (1.1), and only tangentially with the other subjects. The strongest reason for excluding the omitted topics is that each would fill (and some do fill) another book; we do, of course, give some references to the relevant literature. Unfortunately, one cannot say that the study of exact solutions has always maintained good contact with work on more directly physical problems. Back in 1975, Kinnersley wrote "Most of the known exact solutions describe situations which are frankly unphysical, and these do have a tendency to distract attention from the more useful ones. But the situation is also partially the fault of those of us who work in this field. We toss in null currents, macroscopic neutrino fields and tachyons for the sake of greater 'generality'; we seem to take delight at the invention of confusing anti-intuitive notation; and when all is done we leave our newborn metric wobbling on its vierbein without any visible means of interpretation." Not much has changed since then.

In defence of work on exact solutions, it may be pointed out that certain solutions have played very important roles in the discussion of physical problems. Obvious examples are the Schwarzschild and Kerr solutions for black holes, the Friedmann solutions for cosmology, and the plane wave solutions which resolved some of the controversies about the existence of gravitational radiation. It should also be noted that because general relativity is a highly non-linear theory, it is not always easy to understand what qualitative features solutions might possess, and here the exact solutions, including many such as the Taub–NUT solutions which may be thought unphysical, have proved an invaluable guide. Though the fact is not always appreciated, the non-linearities also mean that perturbation schemes in general relativity can run into hidden dangers (see e.g. Ehlers *et al.* (1976)). Exact solutions which can be compared with approximate or numerical results are very useful in checking the validity of approximation techniques and programs, see Centrella *et al.* (1986).

In addition to the above reasons for devoting this book to the classification and construction of exact solutions, one may note that although much is known, it is often not generally known, because of the plethora of journals, languages and mathematical notations in which it has appeared. We hope that one beneficial effect of our efforts will be to save colleagues from wasting their time rediscovering known results; in particular we hope our attempt to characterize the known solutions invariantly will help readers to identify any new examples that arise.

One surprise for the reader may lie in the enormous number of known exact solutions. Those who do not work in the field often suppose that the intractability of the full Einstein equations means that very few solutions are known. In a certain sense this is true: we know relatively few exact solutions for real physical problems. In most solutions, for example, there is no complete description of the relation of the field to sources. Problems which are without an exact solution include the two-body problem, the realistic description of our inhomogeneous universe, the gravitational field of a stationary rotating star and the generation and propagation of gravitational radiation from a realistic bounded source. There are, on the other hand, some problems where the known exact solutions may be the unique answer, for instance, the Kerr and Schwarzschild solutions for the final collapsed state of massive bodies.

Any metric whatsoever is a 'solution' of (1.1) if no restriction is imposed on the energy-momentum tensor, since (1.1) then becomes just a definition of T_{ab} ; so we must first make some assumptions about T_{ab} . Beyond this we may proceed, for example, by imposing symmetry conditions on the metric, by restricting the algebraic structure of the Riemann tensor, by adding field equations for the matter variables or by imposing initial and boundary conditions. The exact solutions known have all been obtained by making some such restrictions. We have used the term 'exact solution' without a definition, and we do not intend to provide one. Clearly a metric would be called an exact solution if its components could be given, in suitable coordinates, in terms of the well-known analytic functions (polynomials, trigonometric functions, hyperbolic functions and so on). It is then hard to find grounds for excluding functions defined only by (linear) differential equations. Thus 'exact solution' has a less clear meaning than one might like, although it conveys the impression that in some sense the properties of the metric are fully known; no generally-agreed precise definition exists. We have proceeded rather on the basis that what we chose to include was, by definition, an exact solution.

1.2 The development of the subject

In the first few years (or decades) of research in general relativity, only a rather small number of exact solutions were discussed. These mostly arose from highly idealized physical problems, and had very high symmetry. As examples, one may cite the well-known spherically-symmetric solutions of Schwarzschild, Reissner and Nordström, Tolman and Friedmann (this last using the spatially homogeneous metric form now associated with the names of Robertson and Walker), the axisymmetric static electromagnetic and vacuum solutions of Weyl, and the plane wave metrics. Although such a limited range of solutions was studied, we must, in fairness, point out that it includes nearly all the exact solutions which are of importance in physical applications: perhaps the only one of comparable importance which was discovered after World War II is the Kerr solution.

In the early period there were comparatively few people actively working on general relativity, and it seems to us that the general belief at that time was that exact solutions would be of little importance, except perhaps as cosmological and stellar models, because of the extreme weakness of the relativistic corrections to Newtonian gravity. Of course, a wide variety of physical problems were attacked, but in a large number of cases they were treated only by some approximation scheme, especially the weak-field, slow-motion approximation.

Moreover, many of the techniques now in common use were either unknown or at least unknown to most relativists. The first to become popular was the use of groups of motions, especially in the construction of cosmologies more general than Friedmann's. The next, which was in part motivated by the study of gravitational radiation, was the algebraic classification of the Weyl tensor into Petrov types and the understanding of the properties of algebraically special metrics. Both these developments led in a natural way to the use of invariantly-defined tetrad bases, rather than coordinate components. The null tetrad methods, and some ideas from the theory of group representations and algebraic geometry, gave rise to the spinor techniques, and equivalent methods, now usually employed in the form given by Newman and Penrose. The most recent of these major developments was the advent of the generating techniques, which were just being developed at the time of our first edition (Kramer *et al.* 1980), and which we now describe fully.

Using these methods, it was possible to obtain many new solutions, and this growth is still continuing.

1.3 The contents and arrangement of this book

Naturally, we begin by introducing differential geometry (Chapter 2) and Riemannian geometry (Chapter 3). We do not provide a formal textbook of these subjects; our aim is to give just the notation, computational methods and (usually without proof) standard results we need for later chapters. After this point, the way ahead becomes more debatable.

There are (at least) four schemes for classification of the known exact solutions which could be regarded as having more or less equal importance; these four are the algebraic classification of conformal curvature (Petrov types), the algebraic classification of the Ricci tensor (Plebański or Segre types) and the physical characterization of the energy-momentum tensor, the existence and structure of preferred vector fields, and the groups of symmetry 'admitted by' (i.e. which exist for) the metric (isometries and homotheties). We have devoted a chapter (respectively, Chapters 4, 5, 6 and 8) to each of these, introducing the terminology and methods used later and some general theorems. Among these chapters we have interpolated one (Chapter 7) which gives the Newman–Penrose formalism; its position is due to the fact that this formalism can be applied immediately to elucidating some of the relationships between the considerations in the preceding three chapters. With more solutions being known, unwitting rediscoveries happened more frequently; so methods of invariant characterization became important which we discuss in Chapter 9. We close Part I with a presentation of the generation methods which became so fruitful in the 1980s. This is again one of the subjects which, ideally, warrants a book of its own and thus we had to be very selective in the choice and manner of the material presented.

The four-dimensional presentation of the solutions which would arise from the classification schemes outlined above may be acceptable to relativists but is impractical for authors. We could have worked through each classification in turn, but this would have been lengthy and repetitive (as it is, the reader will find certain solutions recurring in various disguises). We have therefore chosen to give pride of place to the two schemes which seem to have had the widest use in the discovery and construction of new solutions, namely symmetry groups (Part II of the book) and Petrov types (Part III). The other main classifications have been used in subdividing the various classes of solutions discussed in Parts II and III, and they are covered by the tables in Part V. The application of the generation techniques and some other ways of classifying and constructing exact solutions are presented in Part IV.

The specification of the energy-momentum tensor played a very important role because we decided at an early stage that it would be impossible to provide a comprehensive survey of all energy-momentum tensors that have ever been considered. We therefore restricted ourselves to the following energy-momentum tensors: vacuum, electromagnetic fields, pure radiation, dust and perfect fluids. (The term 'pure radiation' is used here for an energy-momentum tensor representing a situation in which all the energy is transported in one direction with the speed of light: such tensors are also referred to in the literature as null fields, null fluids and null dust.) Combinations of these, and matching of solutions with equal or different energy-momentum tensors (e.g. the Schwarzschild vacuoli in a Friedmann universe) are in general not considered, and the cosmological constant Λ , although sometimes introduced, is not treated systematically throughout.

These limitations on the scope of our work may be disappointing to some, especially those working on solutions containing charged perfect fluids, scalar, Dirac and neutrino fields, or solid elastic bodies. They were made not only because some limits on the task we set ourselves were necessary, but also because most of the known solutions are for the energy-momentum tensors listed and because it is possible to give a fairly full systematic treatment for these cases. One may also note that unless additional field equations for the additional variables are introduced, it is easier to find solutions for more complex energy-momentum tensor forms than for simpler ones: indeed in extreme cases there may be no equations to solve at all, the Einstein equations instead becoming merely definitions of the energy-momentum from a metric ansatz. Ultimately, of course, the choice is a matter of taste.

The arrangement within Part II is outlined more fully in §11.1. Here we remark only that we treated first non-null and then null group orbits (as defined in Chapter 8), arranging each in order of decreasing dimension of the orbit and thereafter (usually) in decreasing order of dimension of the group. Certain special cases of physical or mathematical interest were separated out of this orderly progression and given chapters of their own, for example, spatially-homogeneous cosmologies, spherically-symmetric solutions, colliding plane waves and the inhomogeneous fluid solutions with symmetries. Within each chapter we tried to give first the differential geometric results (i.e. general forms of the metric and curvature) and then the actual solutions for each type of energy-momentum in turn; this arrangement is followed in Parts III and IV also.

In Part III we have given a rather detailed account of the well-developed theory that is available for algebraically special solutions for vacuum, electromagnetic and pure radiation fields. Only a few classes, mostly very special cases, of algebraically special perfect-fluid solutions have been thoroughly discussed in the literature: a short review of these classes is given in Chapter 33. Quite a few of the algebraically special solutions also admit groups of motions. Where this is known (and, as far as we are aware, it has not been systematically studied for all cases), it is of course indicated in the text and in the tables.

Part IV, the last of the parts treating solutions in detail, covers solutions found by the generation techniques developed by various authors since 1980 (although most of these rely on the existence of a group of motions, and in some sense therefore belong in Part II). There are many such techniques in use and they could not all be discussed in full: our choice of what to present in detail and what to mention only as a reference simply reflects our personal tastes and experiences. This part also gives some discussion of the classification of space-times with special vector and tensor fields and solutions found by embedding or the study of metrics with special subspaces. The weight of material, even with all the limitations described above, made it necessary to omit many proofs and details and give only the necessary references.

1.4 Using this book as a catalogue

This book has not been written simply as a catalogue. Nevertheless, we intended that it should be possible for the book to be used for this purpose. In arranging the information here, we have assumed that a reader who wishes to find (or, at least, search for) a solution will know the original author (if the reader is aware the solution is not new) or know some of its invariant properties.

If the original author¹ is known, the reader should turn to the alphabetically-organized reference list. He or she should then be able to identify the relevant paper(s) of that author, since the titles, and, of course, journals and dates, are given in full. Following each reference is a list of all the places in the book where it is cited.

A reader who knows the (maximal) group of motions can find the relevant chapter in Part II by consulting the contents list or the tables. If the reader knows the Petrov type, he or she can again consult the contents list or the tables by Petrov type; if only the energy-momentum tensor is known, the reader can still consult the relevant tables. If none of this information is known, he or she can turn to Part IV, if one of the special methods described there has been used. If still in doubt, the whole book will have to be read.

If the solution is known (and not accidentally omitted) it will in many cases be given in full, possibly only in the sense of appearing contained in a more general form for a whole class of solutions: some solutions of great complexity or (to us) lesser importance have been given only in the sense of a reference to the literature. Each solution may, of course, be found in a great variety of coordinate forms and be characterized invariantly in several ways. We have tried to eliminate duplications, i.e. to identify those solutions that are really the same but appear in the literature as separate, and we give cross-references between sections where possible. The solutions are usually given in coordinates adapted to some invariant properties, and it should therefore be feasible (if non-trivial) for the reader to transform to any other coordinate system he or she has discovered (see also Chapter 9). The many solutions obtained by generating techniques are for the most part only tabulated and not given explicitly,

¹ There is a potential problem here if the paper known to the reader is an unwitting re-discovery, since for brevity we do not cite such works.

since it is in principle possible to generate infinitely many such solutions by complicated but direct calculations.

Solutions that are neither given nor quoted are either unknown to us or accidentally omitted, and in either case the authors would be interested to hear about them. (We should perhaps note here that not all papers containing frequently-rediscovered solutions have been cited: in such a case only the earliest papers, and those rediscoveries with some special importance, have been given. Moreover, if a general class of solutions is known, rediscoveries of special cases belonging to this class have been mentioned only occasionally. We have also not in general commented, except by omission, on papers where we detected errors, though in a few cases where a paper contains some correct and some wrong results we have indicated that.)

We have checked most of the solutions given in the book. This was done by machine and by hand, but sometimes we may have simply repeated the authors' errors. It is not explicitly stated where we did not check solutions.

In addition to references within the text, cited by author and year, we have sometimes put at the ends of sections some references to parallel methods, or to generalizations, or to applications. We would draw the reader's attention to some books of similar character which have appeared since the first edition of this book was published and which complement and supplement this one. Krasiński (1997) has extensively surveyed those solutions which contain as special cases the Robertson-Walker cosmologies (for which see Chapter 14), without the restrictions on energy-momentum content which we impose. Griffiths (1991) gives an extensive study of the colliding wave solutions discussed here in Chapter 25, Wainwright and Ellis (1997) similarly discusses spatiallyhomogeneous and some other cosmologies (see Chapters 14 and 23), Bičák (2000) discusses selected exact solutions and their history, and Belinski and Verdaguer (2001) reviews solitonic solutions obtainable by the methods of Chapter 34, especially §34.4: these books deal with physical and interpretational issues for which we do not have space.

Thanks are due to many colleagues for comments on and corrections to the first edition: we acknowledge in particular the remarks of J.E. Åman, A. Barnes, W.B. Bonnor, J. Carot, R. Debever, K.L. Duggal, J.B. Griffiths, G.S. Hall, R.S. Harness, R.T. Jantzen, G.D. Kerr, A. Koutras, J.K. Kowalczyński, A. Krasiński, K. Lake, D. Lorenz, M. Mars, J.D. McCrea, C.B.G. McIntosh, G.C. McVittie, G. Neugebauer, F.M. Paiva, M.D. Roberts, J.M.M. Senovilla, S.T.C. Siklos, B.O.J. Tupper, C. Uggla, R. Vera, J.A. Wainwright, Th. Wolf and M. Wyman.